Squadinorlignoside: A Novel 7,9'-Dinorlignan from the Stems of Annona squamosa

by Yu-Liang Yang, Fang-Rong Chang, and Yang-Chang Wu*

Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (phone: +886-7-3121101 ext. 2197; fax: +886-7-3114773; e-mail: yachwu@kmu.edu.tw)

Two new polar lignans, *i.e.*, squadinorlignoside (=4-[(1*E*)-1-(hydroxymethyl)-3-(4-hydroxyphenyl)prop-1en-1-yl]phenyl β -D-glucopyranoside; **1**) and (6*R*,7*R*,8*S*)-7a-[(β -D-glucopyranosyl)oxy]-1-methoxyisolariciresinol (**2**) were isolated from the stems of *Annona squamosa*, together with eight known lignans and five known neolignans (compounds **3–15**; *Fig. 1*). All of these constituents are reported for the first time from the genus *Annona*. The structures, absolute configurations, and selected conformational aspects of the new compounds were elucidated spectroscopically. Compound **1** is the first example of a 7,9'-dinorlignan natural product.

Introduction. – In previous studies, a number of bioactive phytochemicals, including ent-kaurane diterpenoids, alkaloids, annonaceous acetogenins, cyclic peptides, etc., were isolated from Annona squamosa [1-3]. In the present work, we report a series of constituents isolated from the polar fractions and the aqueous layer of the MeOH-soluble extracts of A. squamosa. The following 15 lignans and/or neolignans were isolated (*Fig. 1*): squadinorlignoside (1)¹), (6R,7S,8S)-7a-[(β -D-glucopyranosyl)oxy]-1-methoxyisolariciresinol (2), (6R,7R,8S)-1-methoxyisolariciresinol (3) [4], (6S,7S,8R)-7a-[β -D-glucopyranosyl)oxy]isolariciresinol (4) [5], (6R,7R,8S)-isolariciresinol (5) [6], (6R,7S,8S)-7a-[(β -D-glucopyranosyl)oxy]lyoniresinol (6) [7], (6R,7R,8R)-7a- $[(\beta$ -D-glucopryanosyl)oxy]lyoniresinol (7) [7], $[(2R^*, 2'R^*)$ -secoisolariciresin-4-yl] β -Dglucoside (8) [8], $(2R^*, 2'R^*)$ -secoisolariciresinol (9) [9], (7S, 8R, 8'R)-5,5'-dimethoxylariciresinol (10) [10], (7S,8R)-7,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-4-O- β -D-glucopyranoside (11) [11], (7S,8R)-4,7,9,9'-tetrahydroxy-3,3'-dimethoxy-8-O-4'-neolignan (12) [11], (75,8R)-urolignoside (13) [12], (75,8R)-dihydrodehydrodiconiferylalcohol (14) [12], and (7S,8R)-5-methoxydihydrodehydrodiconiferylalcohol (15) [13]. All of these compounds were obtained from *Annona* species for the first time, lignans 1 and 2 being new compounds.

Results and Discussion. – Compound **1**, obtained as syrup, had the molecular formula $C_{22}H_{26}O_8$ based on its HR-FAB-MS data. In the ¹H-NMR spectrum, the resonances of two 1,4-disubstituted Ph groups were observed (δ (H) 6.67, 6.93 (2*d*, J=8.6 Hz each, 2×2 H); 7.11, 7.19 (2*d*, J=8.8 Hz each, 2×2 H)). By analyzing the chemical shifts and coupling constants, one olefinic H-atom at δ (H) 5.83 (*td*, J=7.6, 1.2), and two sets of CH₂ resonances at 3.21 (*d*, J=7.6) and 4.24 (*d*, J=1.2 Hz) indicated a trisubstituted

¹) For systematic names of the new compounds **1** and **2**, see the *Exper. Part.*

^{© 2005} Verlag Helvetica Chimica Acta AG, Zürich

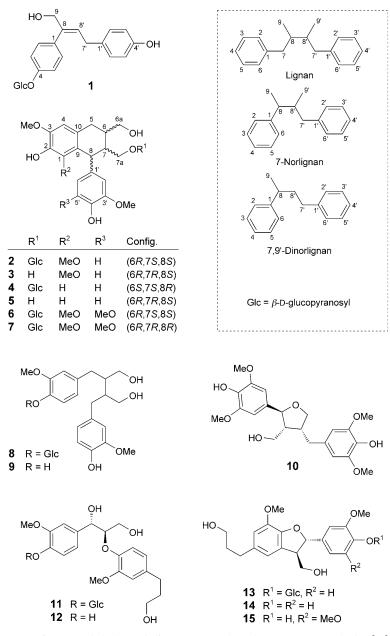


Fig. 1. Structures of compounds 1–15. Basic lignan frameworks and *IUPAC* atom numbering [14] are shown in the box.

olefinic group flanked by two CH₂ groups, one of which was oxygenated (δ (H) 4.24, δ (C) 67.9). The structure of the aglycone was fully established by 2D-NMR experiments, *i.e.*, ¹H,¹H-COSY, TOCSY, HMQC, and HMBC spectra, and the configuration

2732

of the olefinic group was assigned by NOESY (*Fig. 2*). The key NOE correlations of H-C(9)/H-C(8') and H-C(6)/H-C(7') established the (*E*)-configuration.

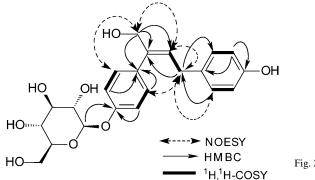


Fig. 2. Selected NOESY, HMBC, and ¹H,¹H-COSY correlations of **1**

The sugar moiety of **1** was found to correspond to a β -D-glucopyranosyloxy (GlcO) residue attached at C(4) of the 7,9'-norlignan skeleton (see *Fig. 1*), as deduced from the HMBC spectrum and from the corresponding EI-MS fragments (*Fig. 3*). Thus, from the above data, the structure of compound **1** was identified as 4-[(1*E*)-1-(hydroxymethyl)-3-(4-hydroxyphenyl)prop-1-en-1-yl]phenyl β -D-glucopyranoside, and the compound was named *squadinorlignoside*. According to the *IUPAC* nomenclature of norlignans [14], this compound has an unprecedented 7,9'-dinorlignan skeleton (*Fig. 1*).

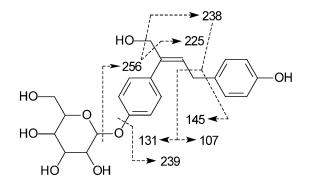
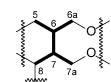



Fig. 3. EI-MS Fragments of 1

Compound **2** was optically active, $[a]_D^{22} = +130.8$ (c=0.026, MeCN), and had the molecular formula $C_{27}H_{36}O_{12}$, as determined by HR-FAB-MS. The ¹³C-NMR spectrum of **2** (see the *Table* in the *Exper. Part*) was very similar to those of the known isolariciresinol-type lignan glycosides **4**, **6**, and **7** [5][7]. The ¹H-NMR spectrum of **2** exhibited signals for one set of *ABX*-type aromatic H-atoms, indicating 1,3,4-trisubstitution (δ (H) 6.76 (d, J=2.0, 1 H); 6.64 (d, J=8.4, 1 H); 6.50 (dd, J=8.4, 2.0 Hz, 1 H)), as well as an aromatic *singlet* at δ (H) 6.57 (1 H). In the ¹H,¹H-COSY and TOCSY spectra, the partial structure **A** was revealed (*Fig. 4*), and three MeO groups (δ (H) 3.31, 3.77, 3.85) at C(1), C(3), and C(3'), respectively, were identified form the NOE crosspeaks of 1-MeO/H–C(8), 3-MeO/H–C(4), and 3'-MeO/H–C(2') (*Fig. 5*).

¹H, ¹H-COSY Fig. 4. ¹H, ¹H-COSY and TOCSY Correlations for the partial structure **A** of **2**

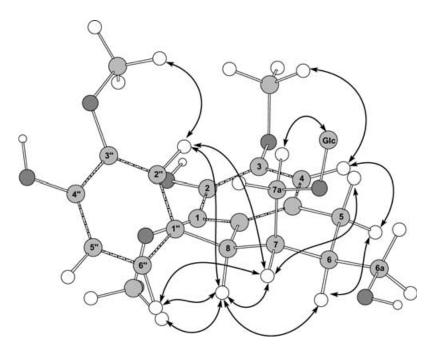


Fig. 5. Selected NOESY correlations of **2**. The cross-peak between H-C(7a) and Glc refers to the anomeric H-atom H-C(1'').

The presence of a Glc group in **2** was inferred from its ¹H- and ¹³C-NMR spectra. The sugar moiety was attached at C(7a), as deduced from the NOE cross-peaks between the anomeric Glc H-atom (δ (H) 4.27 (d, J=7.6 Hz)) and CH₂(7a) (δ (H) 3.45 (dd, J=9.8, 4.0), 3.89 (dd, J=9.8, 5.6 Hz)).

The above results, in combination with a detailed analysis of the EI-MS fragments of **2** (*Fig.* 6), indicated that the compound was a β -D-glucoside of 1-methoxyisolariciresinol. The relative configurations at C(6) to C(8) were determined by a NOESY experiment (*Fig.* 5), and corroborated by inspection of ¹H,¹H-coupling constants. The NOE correlations between H–C(2',6') and H–C(7), together with a *J*(7,8) value of 6.4 Hz, indicated that H–C(7) and H–C(8) are in an axial/equatorial (ax/eq) relation. The coupling constants for H–C(5) [H_{ax}–C(5) at δ (H) 2.59 (*dd*, *J*=14.8, 11.6 Hz); H_{eq}–C(5) at δ (H) 2.71 (*dd*, *J*=14.8, 4.8 Hz)] evidenced that H–C(6) is in an axial orientation. The NOESY cross-peaks of H–C(7) and H–C(8) with H–C(6), and of H_{ax}–C(5) with H– C(7), and the absence of a cross-peak between H–C(5) and H–C(8), and H–C(5) and

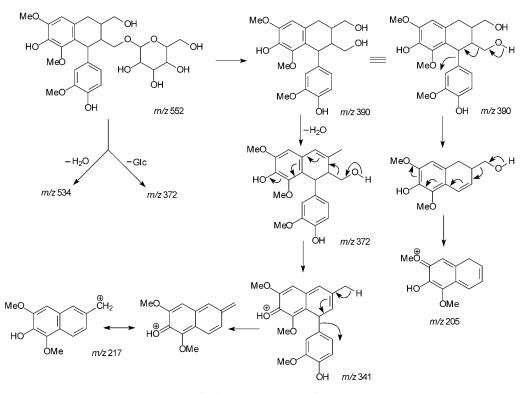


Fig. 6. EI-MS Fragments of 2

H–C(2',6'), indicated that the cyclohexane ring of **2** is in a half-envelope conformation (*Fig. 5*), with the relative (6*R**,7*S**,8*S**)-configuration. From circular-dichroism (CD) experiments, the absolute (6*R*,7*S*,8*S*)-configuration was established, based on $\Delta \varepsilon$ values of – 0.06 and +0.11 at 299 and 275 nm, respectively [15]. From all these data, compound **2** was identified as [(1*S*,2*S*,3*R*)-1,2,3,4-tetrahydro-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxynaphthalen-2-yl]methyl β -D-glucopyranoside.

The other isolated lignanoids 3-15 were structurally elucidated by spectroscopic analysis and comparison with literature data. In previous studies, only furofuran lignans with a 7,9':7',9-diepoxylignan skeleton have been reported from *Annona* species [16][17]. In the present study, three different lignan skeletons were identified: the 2,7'-cyclolignans 2-7, the diarylbutanelignans 8 and 9, and the 7',9'-epoxylignan 10, all of which are biogenetically derived from the furofuran lignans. In addition, five neolignans, 11 - 15, were isolated for the first time from *Annona*. So far, only one neolignan analogue, named grossamide, has been reported from *Annona* [18].

Experimental Part

General. Silica gel 60 (230-400 mesh; Merck) was used for column chromatography (CC). Prep. HPLC: Develosil ODS and C30-UG-5 columns (250×20 mm) on a JASCO PU-1580 apparatus with a UV-1575 detector.

TLC: Spots were detected by spraying with 50% H₂SO₄, and then heated on a hot plate. UV Spectra: *JASCO V*-530 spectrophotometer; λ_{max} in nm. Optical rotations: *JASCO P-1020* digital polarimeter. CD Spectra: *JASCO J*-720 spectropolarimeter; $\lambda (\Delta \varepsilon)$ in nm. IR Spectra: a *Mattson Genesis-II* spectrophotometer; in cm⁻¹. ¹H-NMR: at 400 or 500 MHz in (D₆)acetone or CD₃OD; δ in ppm, *J* in Hz. ¹³C-NMR, DEPT, ¹H,¹H-COSY, TOCSY, HMBC, HMQC, and NOESY Spectra: *Varian Unity Plus-400* and *Unity INOVA-500*. EI-MS: *Finnigan POLARISQ* mass spectrometer, with direct-insert probe; HR-FAB-MS: *Jeol JMS-HX-110* mass spectrometer; in *m/z* (rel. %).

Plant Material. Fresh stems of *A. squamosa* were collected from Shueimen, Pingtung County, Taiwan, in May 2000. The plant was identified by Dr. *Hsin-Fu Yen*, National Museum of Natural Science, Taichung, Taiwan. A voucher specimen (Annona 6) was deposited at the Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.

Extraction and Isolation. Fresh stems of *A. squamosa* (15 kg) were extracted repeatedly with MeOH at r.t. The combined extracts were evaporated under reduced pressure to yield a dark-brown syrup (550 g), which was partitioned between CHCl₃ and H₂O. Both layers were further processed separately. *a*) The CHCl₃ layer was extracted with 3% aq. HCl to remove alkaloids. The 'neutral' CHCl₃ soln. was dried and evaporated to leave

Position	2		3	4	6	7
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(C)$	$\delta(C)$	$\overline{\delta(C)}$	$\delta(C)$
1	_	147.5	147.6	117.4	147.6	147.6
2	_	138.9	138.9	145.9	138.9	138.9
3	_	148.6	148.5	147.3	148.6	148.8
4	6.57 (s)	107.9	107.8	112.3	107.9	107.9
5	2.59 $(dd, J = 14.8, 11.6)$ 2.71 $(dd, J = 14.8, 4.8)$	33.9	33.6	33.6	33.8	33.8
6	1.68 - 1.74 (m)	40.6	40.9	41.1	40.6	41.2
6a	3.52 (dd, J = 10.8, 6.4) 3.60-3.66 (m)	66.3	66.8	65.5	66.2	66.2
7	2.04 - 2.10 (m)	46.8	49.6	45.3	46.7	46.0
7a	3.45 (dd, J=9.8, 4.0) 3.89 (dd, J=9.8, 5.6)	71.5	64.1	70.7	71.5	71.6
8	4.40 (d, J = 6.4)	42.4	42.0	48.3 ^a)	42.7	43.2
9	_	126.6	126.4	129.3	126.4	126.2
10	_	130.2	130.1	138.8	130.2	130.
1′	_	140.1	140.1	133.7	139.3	139.4
2'	6.76 (d, J = 2.0)	113.6	113.4	113.9	106.9	107.
3′	_	148.7	148.6	149.0	149.0	149.
4′	_	145.3	145.3	145.2	134.5	134.
5'	6.64 (d, J = 8.4)	115.7	115.7	116.0	149.0	149.0
6′	6.50 (dd, J = 8.4, 2.0)	121.7	121.7	123.5	106.9	107.
1″	4.27 (d, J = 7.6)	104.8	_	103.8	104.8	104.2
2″	3.20-3.70	75.2	_	75.0	75.2	75.
3‴	3.20-3.70	78.2	_	78.2	78.2	78.2
4″	3.20-3.70	71.7	_	71.4	71.7	72.0
5″	3.20-3.70	77.9	_	77.8	77.9	78.0
6''	3.63–3.69 (<i>m</i>) 3.81 (<i>dd</i> , <i>J</i> =10.0, 2.0)	62.8	_	62.4	62.8	62.7
1-MeO	3.31 (s)	60.1	60.1	_	60.2	60.
3-MeO	3.85 (s)	56.6	56.6	56.5	56.6	56.0
3'-MeO	3.77 (s)	56.5	56.3	56.4	56.8	56.
5'-MeO	_	_	_	_	56.8	56.8

Table. NMR Data of the 2,7'-Cyclolignans 2–4, 6, and 7. At 500/125 MHz, resp., in CD₃OD; δ in ppm, J in Hz.

a brownish, viscous residue (160 g), which was subjected to CC (SiO₂; CHCl₃/MeOH mixtures of increasing polarity): 22 fractions (Fr.) on the basis of TLC. *Fr. 20* was subjected to HPLC to afford 15 subfractions: *Fr. 20.1–20.15*. Compounds **12** (13 mg), **15** (19 mg), and **14** (18 mg) were isolated by PR-HPLC (*C18*; H₂O/MeCN 80:20) from *Fr. 20.6*, *Fr. 20.14*, and *Fr. 20.15*, resp. Compounds **3** (5 mg), **5** (6 mg), and **10** (7 mg) were obtained by RP-HPLC (*C30*; H₂O/MeCN 80:20) from *Fr. 20.7*, *Fr. 20.8*, and *Fr. 20.13*, resp. Further purification of *Fr. 21* by RP-HPLC (*C30*; H₂O/MeCN 80:20) yielded compound **9** (10 mg).

b) The original aq. extract (see above) was subjected to CC (*Diaion HP-20*; $H_2O/MeOH$): *Fr. A1–A5. Fr. A3* (eluted with $H_2O/MeOH 1:1$) was partitioned between CHCl₃ and H_2O , and the aq. layer was re-extracted with AcOEt. The resulting AcOEt layer was subjected to CC (SiO₂; AcOEt/MeOH 10:1): *Fr. A3.1–A3.14. Fr. A3.10* was further separated into nine subfractions: *Fr. A3.10-1–A3.10-9*. Recyclic RP-HPLC (*C30*, MeCN/H₂O 30:70) of *Fr. A3.10-4* afforded **6** (4 mg). Compounds **1** (3 mg), **2** (4 mg), **4** (4 mg), **7** (5 mg), **8** (4 mg), **11** (5 mg), and **13** (16 mg) were obtained by recyclic RP-HPLC (*C30*; MeCN/H₂O 15:85) from the subfractions *-2, -3, -5, -6, -7, -8*, and *-9*, resp., of *Fr. A3.10*.

Squadinorlignoside (=4-[(1E)-1-(Hydroxymethyl)-3-(4-hydroxyphenyl)prop-1-en-1-yl]phenyl β -D-gluco-pyranoside; **1**). Syrup. UV (MeCN): 195, 225 (sh), 274. IR (neat): 3415, 1618, 1520. ¹H-NMR (400 MHz; CD₃OD)²): 3.21 (d, J=7.6, CH₂(7')); 3.40 (m, H-C(4'')); 3.43 (m, H-C(5'')); 3.47 (m, H-C(2'',3'')); 3.70 (dd, J=12.0, 5.6, H_a-C(6'')); 3.90 (dd, J=12.0, 2.4, H_b-C(6'')); 4.24 (d, J=1.2, CH₂(9)); 4.90 (overlapping, H-C(1'')); 5.83 (td, J=7.6, 1.2, H-C(8')); 6.67 (d, J=8.6, H-C(3',5')); 6.93 (d, J=8.6, H-C(2',6')); 7.11 (d, J=8.8, H-C(3,5)); 7.19 (d, J=8.8, H-C(2,6)). ¹³C-NMR (125 MHz, CD₃OD): 34.8 (C(7')); 62.5 (C(6'')); 67.9 (C(9)); 71.4 (C(4'')); 74.9 (C(2'')); 78.0 (C(3'')); 78.1 (C(5'')); 102.3 (C(1'')); 116.2 (C(3',5')); 117.5 (C(3,5)); 127.9 (C(8')); 130.2 (C(2',6')); 130.9 (C(2,6)); 133.1 (C(1')); 134.1 (C(1)); 141.7 (C(8)); 156.5 (C(4')); 158.2 (C(4)). EI-MS: 256 (10), 239 (57), 238 (100), 225 (40), 145 (22), 131 (47), 107 (73). HR-ESI-MS: 441.1540 ([M + Na]⁺, C₂₂H₂₆NaO⁺₈; calc. 441.1525).

(6R,7R,8S)-7*a*-*[*(β-D-Glucopyranosyl)oxy]-1-methoxyisolariciresinol (=[(1S,2S,3R)-1,2,3,4-Tetrahydro-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxynaphthalen-2-yl]methyl β-D-glucopyranoside; **2**). Syrup. UV (MeCN): 201, 232 (sh), 282. $[\alpha]_D^{22}$ = +130.8 (*c* = 0.026, MeCN). CD (MeCN): 299 (-0.06), 275 (+0.11), 249 (+0.28). IR (neat): 3400, 1620, 1515. ¹H- and ¹³C-NMR: see the *Table*. EI-MS: 552 (5, *M*⁺), 390 (35), 389 (29), 372 (91), 371 (100), 340 (50), 218 (21), 210 (23). HR-FAB-MS: 575.2108 ([*M*+Na]⁺; C₂₇H₃₆NaO₁₂⁺; calc. 575.2105).

REFERENCES

- [1] Y. L. Yang, F. R. Chang, C. C. Wu, W. Y. Wang, Y. C. Wu, J. Nat. Prod. 2002, 65, 1462.
- [2] M. C. Zafra-Polo, B. Figadère, T. Gallardo, J. R. Tormo, D. Cortes, Phytochemistry 1998, 48, 1087.
- [3] H. Morita, Y. Sato, J. Kobayashi, *Tetrahedron* 1999, 55, 7509.
- [4] C. Rajendiran, B. R. Pai, P. S. Subramanian, Indian J. Chem., Sect. B 1991, 30, 681.
- [5] M. Wang, J. Li, M. Rangarajan, Y. Shao, E. J. LaVoie, T. C. Huang, C. T. Ho, J. Agric. Food Chem. 1998, 46, 4869.
- [6] E. Okuyama, K. Suzumura, M. Yamazaki, Chem. Pharm. Bull. 1995, 43, 2200.
- [7] K. Ohashi, H. Watanabe, Y. Okumura, T. Uji, I. Kitagawa, Chem. Pharm. Bull. 1994, 42, 1924.
- [8] S. Matsuura, M. Iinuma, Phytochemistry 1985, 24, 626.
- [9] A. Buske, J. Schmidt, A. Porzel, G. Adam, Eur. J. Org. Chem. 2001, 18, 3537.
- [10] H. Achenbach, M. Stocker, M. A. Constenla, Phytochemistry 1988, 27, 1835.
- [11] N. Matsuda, M. Kikuchi, Chem. Pharm. Bull. 1996, 44, 1676.
- [12] Y. C. Shen, P. W. Hsieh, Y. H. Kuo, Phytochemistry 1998, 48, 719.
- [13] A. Masakazu, S. Akira, Mokuzai Gakkaishi 1978, 24, 422.
- [14] G. P. Moss, Pure Appl. Chem. 2000, 72, 1493.
- [15] P. B. Hulbert, W. Klyne, P. H. Scopes, J. Chem. Res., Miniprint 1981, 401.
- [16] C. Y. Chen, T. Y. Wu, F. R. Chang, Y. C. Wu, J. Chin. Chem. Soc. 1998, 45, 629.
- [17] Y. C. Wu, G. Y. Chang, F. N. Ko, C. M. Teng, Planta Med. 1995, 61, 746.
- [18] L. P. Santos, M. A. D. Boaventura, A. B. Oliveira, J. M. Cassady, Planta Med. 1996, 72, 76.

Received May 3, 2005

²) For atom numbering, see *Fig. 1*. Doubly primed atoms refer to the Glc moiety, the 1"-postion corresponding to the anomeric center.